Sotsiaalteadlased konstrueerivad sageli hüpoteesi, milles nad eeldavad, et elanikkonna suhtes saab rakendada teatavat üldistatud reeglit. Nad kontrollivad seda hüpoteesi testide abil, mis võivad olla kas parameetrilised või mitteparameetrilised. Parameetrilised testid on tavaliselt tavalisemad ja neid uuritakse palju varem kui uuringute tegemisel kasutatud standardteste.

Uurimistööde teostamise protsess on suhteliselt lihtne - püstitate hüpoteesi ja eeldate, et elanikkonna suhtes saab rakendada teatud “seadust”. Seejärel viid läbi testi ja kogute andmeid, mida seejärel statistiliselt analüüsida. Kogutud andmeid saab tavaliselt esitada graafikuna ja hüpoteesitud seadust nende andmete keskmise väärtusena. Kui hüpoteesitud seadus ja keskmise väärtuse seadus ühtivad, siis hüpotees kinnitatakse.

Mõnel juhul ei ole keskmise väärtuse leidmine seaduste otsimiseks kõige sobivam viis. Suurepärane näide on kogutulu jaotamine. Kui te pole keskmise väärtusega sobinud, siis tõenäoliselt sellepärast, et üks või kaks miljardäri häirivad teie keskmisi väärtusi. Kuid mediaan annab keskmise sissetuleku kohta palju täpsema tulemuse, mis tõenäoliselt vastab teie andmetele.

Teisisõnu, parameetrilist testi kasutatakse siis, kui populatsiooni kohta tehtud eeldused on selged ja selle kohta on palju kättesaadavat teavet. Küsimused kavandatakse nende konkreetsete parameetrite mõõtmiseks, nii et andmeid saab seejärel vastavalt eespool kirjeldatule analüüsida. Mitteparameetrilist testi kasutatakse siis, kui testitav populatsioon pole veel täielikult teada ja seetõttu pole ka uuritavad parameetrid teada. Ehkki parameetrilise testi tulemustena kasutatakse keskmisi väärtusi, võtab mitteparameetriline test mediaani ja seetõttu kasutatakse seda tavaliselt siis, kui algne hüpotees ei vasta andmetele.

Mis on parameetriline test?

Parameetriline test on test, mille eesmärk on anda andmeid, mida seejärel analüüsitakse teadusharu kaudu, mida nimetatakse parameetriliseks statistikaks. Parameetriline statistika eeldab, et populatsiooni kohta on juba teatud teave, st tõenäosusjaotus. Näitena kirjeldab kehakõrguse jaotust kogu maailmas normaaljaotusmudel. Sarnaselt sellele saab kõiki teadaolevaid levitamismudeleid rakendada andmekogumitele. Kui aga eeldada, et teatud levitamismudel sobib andmekogumiga, tähendab see, et oletatavasti on elanike kohta teada teatud lisateavet, nagu ma juba mainisin. Tõenäosusjaotus sisaldab erinevaid parameetreid, mis kirjeldavad jaotuse täpset kuju. Neid parameetreid pakuvad parameetrilised testid - iga küsimus on kohandatud nii, et see annaks iga küsitletud isiku jaoks kindla parameetri täpsuse. Kombineeritult kasutatakse tõenäosusjaotuseks selle parameetri keskmist väärtust. See tähendab, et parameetrilised testid eeldavad ka populatsiooni kohta midagi. Kui eeldused on õiged, annavad parameetrilise testiga saadud andmete suhtes rakendatud parameetriline statistika tulemusi, mis on palju täpsemad ja täpsemad kui mitteparameetrilise testi ja statistika tulemused.

Parameetrilise ja mitteparameetrilise erinevus

Mis on mitteparameetriline test?

Sarnaselt parameetrilise testi ja statistikaga on olemas ka mitteparameetriline test ja statistika. Neid kasutatakse siis, kui saadud andmed ei peaks eeldatavasti vastama normaalsele jaotuskõverale või tavalistele andmetele. Järjestikuste andmete suurepärane näide on ülevaade, mille jätate, kui hindate kindlat toodet või teenust skaalal 1 kuni 5. Tavalised andmed saadakse testidest, mis kasutavad erinevaid pingeread või korraldusi. Seetõttu ei tugine see parameetrite arvudele ega täpsetele väärtustele, millele parameetrilised testid tuginesid. Tegelikult ei kasuta see parameetreid mingil viisil, kuna see ei eelda teatud jaotust. Tavaliselt eelistatakse parameetrilist analüüsi mitteparameetrilisele, kuid kui parameetrilist testi ei saa teadmata populatsiooni tõttu läbi viia, on vaja kasutada mitteparameetrilisi teste.

Parameetrilise ja mitteparameetrilise erinevus

Parameetriliste ja mitteparameetriliste testide erinevus

1) oletuste tegemine

Nagu ma mainisin, teeb parameetriline test eeldusi populatsiooni kohta. See vajab parameetreid, mis on ühendatud normaalse jaotusega, mida kasutatakse analüüsis, ja ainus viis nende parameetrite tundmiseks on omada teatud teadmisi populatsiooni kohta. Teisest küljest ei toetu mitteparameetriline test, nagu nimigi viitab, ühelegi parameetrile ja seetõttu ei eelda see populatsiooni kohta midagi.

2) Parameetriliste ja mitteparameetriliste tõenäosus

Andmete parameetriliste testide korral teostatava statistilise analüüsi aluseks on tõenäosusjaotus. Teisest küljest pole mitteparameetriliste testide alust olemas - see on täiesti meelevaldne. Selle tulemuseks on suurem paindlikkus ja hüpoteesi kogutud andmetega sobitamine on lihtsam.

3) Keskmise kalduvuse mõõt

Tsentraalse kalduvuse mõõt on tõenäosusjaotuse keskne väärtus. Ja ehkki mitteparameetrilise statistika korral on tõenäosusjaotus meelevaldne, eksisteerib see siiski, ja nii on ka keskne tendents. Need meetmed on siiski erinevad. Parameetriliste testide puhul võetakse see keskväärtusena, mitteparameetriliste testide korral mediaanväärtuseks.

4) populatsiooni parameetrite tundmine

Nagu ma esimeses erinevuses mainisin, varieerub teave populatsiooni kohta parameetriliste ja mitteparameetriliste testide ning statistika vahel. Nimelt on parameetrilise analüüsi jaoks absoluutselt vajalikud teatud teadmised elanikkonna kohta, kuna täpsete tulemuste saamiseks on vaja populatsiooniga seotud parameetreid. Teisest küljest saab mitteparameetrilist lähenemisviisi kasutada ilma elanikkonna eelnevate teadmisteta.

Parameetrilised vs mitteparameetrilised testid: võrdlusdiagramm

Parameetriline test VERSUS mitteparameetriline test

Parameetriliste ja mitteparameetriliste kokkuvõte

  • Parameetriline test on test, mis eeldab, et vastupidiselt mitteparameetrilisele on teatud populatsiooni kohta teada teatud parameetrid ja jaotused. Parameetrilises testis kasutatakse keskmist väärtust, mitteparameetrilises aga keskmist väärtust Parameetriline lähenemine nõuab vastupidiselt mitteparameetrilisele lähenemisele eelnevaid teadmisi elanikkonna kohta

Viited

  • Lisaks William J. ja Ronald L. Iman. "Asetuse teisendused sillana parameetrilise ja mitteparameetrilise statistika vahel." Ameerika statistik35.3 (1981): 124-129
  • Sheskin, David J. Parameetriliste ja mitteparameetriliste statistiliste protseduuride käsiraamat. crc Press, 2003.
  • Kruglyak, Leonid jt. "Parameetriline ja mitteparameetriline seoste analüüs: ühtne mitmepunktiline lähenemisviis." Inimese geneetika ameerika ajakiri58.6 (1996): 1347.
  • Pildikrediit: https://en.wikipedia.org/wiki/File:GQplot.svg#/media/File:GQplot.svg
  • Pildikrediit: https://commons.wikimedia.org/wiki/File:NPGQPlota.svg#/media/File:NPGQPlota.svg